
IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 7, July 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.57104 524

Accident Prediction from Traffic Data using

Hadoop

Pallavi Dubey
1
, Prof. Manaswini Panigrahi

2

Department of Computer Science and Engineering, IES Institute of Technology and Management, Bhopal, India
1, 2

Abstract: Accident prediction has been in trend to provide alerts before accidents happen. Traffic on highways is

monitored and lots of data is processed daily to predict probability of accidents based on highway conditions like road

surface, light on highway, turns etc. In this paper to predict accident based on different queries and process this big data

Hadoop has been used. It is found that execution time is very less on Hadoop as compared to sequential techniques.

Keywords: Data analysis, Hadoop, MapReduce, HDFS

I. INTRODUCTION

Hadoop is an open source fault tolerant distributed

framework. Hadoop is a platform in which the

implementation of Mapreduce is there, which allow the

processing of large data set across the low-cost commodity

hardware clusters. The main job of the Hadoop server

cluster is to store and process data. It provides high

availability of data as, it is designed to work which

thousands of machines. As it works which thousands of

machines due to which the failure of the node in the

cluster would also arise. Thus, to handle and monitor this

problem with the library itself is designed so.

It consists of two main core components

1. Hadoop Distributed File System

2. MapReduce

Hadoop distributed file system (HDFS) is implemented to

store the large set of data. HDFS provides the higher

throughput and availability of data, as it basically carries

the replication of data.

MapReduce

Mapreduce is a programming, model. It consists of the

mapper and reducer phase of generating and processing

the large set of data. The function of the mapper is to take

the input in a pair of key and value and the function of

reducer is to handle that intermediate key and value. The

key value is nothing but the data which is related to that

particular task, i.e. the value and the group of the no. of

value is a key. Then it is forwarded to the reducer. The

merge process is carried out by reducer which merges

these set of value in order to get the small set of values

into the same node. The different values that the reducers

phase receive having the same key into nodes.

Hadoop is basically an open source platform consist of the

implementation of Mapreduce. A single hadoop cluster

consists of no. of task tracker, job tracker, name node, data

node, and the processing, function of each are described

further.

Figure1: Hadoop Cluster

The two main components of apache hadoop are

1) HDFS

2) MapReduce

Figure 2: Hadoop Architecture

To manage the HDFS it consists of no. of Name Node,

Data Node, and Secondary Name Node, Job Tracker, and

Task Tracker are there to perform the MapReduce.

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 7, July 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.57104 525

 HDFS is mainly for storing large sets of a data

file. It is so designed to handle the failures on an

individual machine. HDFS are typically a workflow, not a

primary data storage, for performing the Mapreduce data

is copied over HDFS, and to get the result it is again

copied form HDFS. To increase the reliability of HDFS, it

keeps the data replicas on three machines, with 1 replica

on one rack and other replica on the different racks. As in

Fig 3, the whole architecture of HDFS is shown.

Figure 3: HDFS Architecture

 MapReduce is a framework for performing the

parallel processing of a large set of data i.e unstructured

and structured. It consist of two phases, which are mapper

and reducer phase, it takes the key/ value pair as an input,

and perform some operation on this input and produce the

relevant result in the form of key/ value. To process these

results reduce phase is required as specified by the reduce

function. The data from the mapper phase is shuffled,

which means the data is exchanged and merge-sorted, to

the machine in order to perform the reduce phase.

Figure 4: Map-Reduce framework

The architecture of Mapreduce is given in Fig 4, which

represent the function of mapper and reducer phase.

 In order to describe it further the data is processed in the

following 6 steps

1. Input reader: The basic function of input reader

is to take the input file, which is a large block and convert

it into key/value pairs. The unit of data is split, and the

data which is from the input reader is distributed into the

splits, and processed by a map task. The usual split size of

a block is 64 MB by default, but it is configurable.

2. Map Function: The Map function takes the input

from the input reader in the form of key/ value, perform

the operation of map function on it, and give the output as

a new key/value pair.

3. Combiner Function: This step of Mapreduce is

optional, which is performed in the following cases.

 When there is repetition in the keys produced by

the map task.

 When the user specified the reduce function is

commutative and associative.

In the above cases, the partial reduction will perform the

combiner function so that the pair which own the

same key will be processed in a group by a reduce task.

4. Partition function: The hashing function is performed in

this step by default, whose function is to perform the

partition of the intermediate, which are the output from the

map task to reduce task. This can be useful by other

partition function also, which are known as the user define

partition function, generally it provides good balancing.

5. Reduce Function: The pair with the same key will get

processed in a group, the reduce function is called once for

each different key. It is guaranteed that the input to each

reduce task is processed in order to increase the key order.

During the sorting process, the user defines its comparison

function to be used.

6. Output Writer: The output from the output writer is

written in a stable storage. Basically to a file the function

can be modified, so as to store the data in a database.

The need for providing the input reader and output writer

depends on the sources and destination of data, whereas

the need of combiner and partition depends on the data

distribution.

The access point for clients is Job Tracker in Hadoop. The

main function of Job Tracker is to provide a fair and

efficient scheduling of the mapreduce incoming jobs, and

the other function is to assign the task for the execution,

which is performed by the Task Tracker.

On the basis of available resources no. of a task will be run

by the task tracker, when it is ready a new task is

allocated.

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 7, July 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.57104 526

II. ACCIDENT PREDICTION USING

MAP/REDUCE

We experiment our method based on the MapReduce for

solving user asked query from traffic prediction data. The

system was built on Apache Hadoop for increasing

processing performance using multi-node cluster. In our

experiment many queries are processed which are

discussed below in table 1.

TABLE 1

Queries Data set

Q1: Area where

maximum accident

occurs

Grid Reference Easting

and Grid Reference

Northing and Road

surface

Q2: On which Highway

Accidental Timing.

Accident date and Time

and Road class

Q3: On which road

Maximum Accident

Occur due to Road

Surface.

Road class and Road

surface and Number of

causality

Q4: Due to Lighting

Problem on which road

Maximum Accident

occurs

Road class and Lighting

condition and Number of

causality

Q5: Probability of

Accident at any location

when drive is male or

female.

Sex of causality and Age

of Causality and

Causality class

We experiment these queries which are discussed in table

1 on different amount of data by using C and Hadoop and

generate the result in mm/sec . The experiment data tables

are

TABLE 2

USING C

Data Q 1 Q 2 Q 3 Q 4 Q 5

500

MB

6412 6790 6127 7116 6342

1

GB

17342 19040 16809 19800 16243

2

GB

679421 732046 650310 792016 639140

TABLE 3

USING HADOOP

Data Q 1 Q 2 Q 3 Q 4 Q 5

500 MB 1309 1457 1297 1599 1092

1 GB 2094 2197 1876 2201 1643

2 GB 5197 5407 4837 5917 4561

III. RESULT

These graphs show the CPU execution time for executing

individual query for predicting accident from traffic data.

Figure 5: Graph for executing queries on 500 MB data

Figure 6: Graph for executing queries on 1 GB data

Figure 7: Graph for executing queries on 2 GB data

IV. CONCLUSION

Large amount of data has been generated these days in

every domain. Traffic data has been tracked these days in

various countries to give alert for accident and highway

information. In this paper accident prediction has been

done for various queries.

Results are compared for 500 MB, 1 GB and 2 GB for

queries using C and Hadoop Map/reduce. It is found

maximum of 140 times speedup is achieved by executing

Map/reduce on 4 node cluster.

1

10

100

1000

10000

1 2 3 4 5

500 MB
USING C

500 MB
HADOOP

Series3

1

10

100

1000

10000

100000

1 2 3 4 5

1 GB USING
C

1GB
HADOOP

Series3

1

10

100

1000

10000

100000

1000000

1 2 3 4 5

2 GB
USING C

2 GB
HADOOP

Series3

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 7, July 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.57104 527

REFERENCES

[1] Seoung -hun Park, Young- guk Ha, “Large Imbalance Data

Classification Based on MapReduce for Traffic Accident

Predication” , IEEE International Conference on Innovative Mobile
and Internet Services in Ubiquitous Computing,pp 45-49,2014.

 [2] J. Conejero, P. Burnap, O. Rana, and J. Morgan, “Scaling Archived
Social Media Data Analysis using a Hadoop Cloud”, IEEE, 2013.

[3] S. G. Manikandan and S. Ravi, “Big Data Analysis Using Apache

Hadoop,” 2014 International Conference IT Converge. Security, ,
pp. 1–4, Oct 2014.

[4] J. Nandimath, “Big Data Analysis Using Apache Hadoop”, pp.

700–703, 2013.
[5] S. Maitrey and C. K. Jha, “Handling Big Data Efficiently by Using

Map Reduce Technique”, IEEE Int. Conf. Comput. Intell.

Commun. Technology, pp. 703–708, Feb. 2015.
[6] S. Humbetov, “Data-Intensive Computing with,” 2012.

 [7] L. P. Thompson and D. P. Miranker, “Fast Scalable Selection

Algorithms for Large Scale Data,” pp. 412–420, 2013.

[8] D. Chung, X. Rui, D. Min, and H. Yeo, “Road traffic big data

collision analysis processing framework,” 2013 7th Int. Conf. Appl.

Inf. Commun. Technol., pp. 1–4, Oct. 2013.
[9] J. Shafer, S. Rixner, and A. L. Cox, “The Hadoop Distributed File

system : Balancing Portability and Performance.”

[10] M. Wang, S. B. Handurukande, and M. Nassar, “RPig : A Scalable
Framework for Machine Learning and Advanced Statistical

Functionalities”, IEEE 4th International Conference on Cloud

Computing Technology and Science ,2012, pp. 3–10, 2012.
[11] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data

processing on large clusters. Commun. ACM, 51(1):107–113, 2008.

[12] S. Guha, “Computing environment for the statistical analysis of
large and complex data,” Ph.D., Purdue University, 2010.

[13] Marcin Jedyk, MAKING BIG DATA, SMALL, Using distributed

systems for processing, analyzing and managing large huge data
sets, Software Professionals Network, Cheshire Data systems Ltd.

[14] OnurSavas, YalinSagduyu, Julia Deng, and Jason Li,Tactical Big

Data Analytics: Challenges, Use Cases and Solutions, Big Data
Analytics Workshop in conjunction with ACM Sigmetrics

2013,June 21, 2013.

[15] Kyuseok Shim, “MapReduce Algorithms for Big Data Analysis”,
2013, LNCS 7813, pp. 44–48.

[16] Apache™, “Apache™ Hadoop”, http://hadoop.apacahe.org.

